Global well-posedness for the primitive equations with less regular initial data

نویسنده

  • Frédéric Charve
چکیده

Résumé: Cet article est consacré à l’étude du temps d’existence des solutions du système des équations primitives pour des données moins régulières. On interpole les résultats d’existence globale à données Ḣ 1 2 petites fournis par le théorème de FujitaKato, et le résultat de [6] qui donne l’existence globale si le paramètre de Rossby ε est suffisamment petit, et pour des données plus régulières (partie oscillante initiale dans Ḣ 1 2 ∩ Ḣ1 et partie quasigéostrophique initiale dans H1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness for the Compressible Navier-stokes Equations with the Highly Oscillating Initial Velocity

Cannone, Meyer and Planchon [3] proved the global well-posedness of the incompressible Navier-Stokes equations for a class of highly oscillating data. In this paper, we prove the global well-posedness for the compressible NavierStokes equations in the critical functional framework with the initial data close to a stable equilibrium. Especially, this result allows us to construct global solution...

متن کامل

Well-posedness for the viscous shallow water equations in critical spaces

We investigate the well-posedness for the 2D viscous shallow water equations in the theory of compressible fluid. Making use of the Fourier frequency localization and Bony paraproduct decomposition, closing to a stable equilibrium h0, we obtain the local well-posedness for general initial data u0 and the global well-posedness for small initial data u0 in certain scaling invariant Besov spaces, ...

متن کامل

Global Well–posedness of the Three-dimensional Viscous Primitive Equations of Large Scale Ocean and Atmosphere Dynamics

In this paper we prove the global existence and uniqueness (regularity) of strong solutions to the three-dimensional viscous primitive equations, which model large scale ocean and atmosphere dynamics. MSC Subject Classifications: 35Q35, 65M70, 86-08,86A10.

متن کامل

Local existence of solutions to the free boundary value problem for the primitive equations of the ocean

Lions, Temam, and Wang in [ "Probì emè afrontì ere libre pour les modèles couplés de l'océan et de l'atmosphère, " Acad. introduced a free surface model for the primitive equations of the ocean. In this paper, we establish the local well-posedness of the model with analytic initial data.

متن کامل

On the Global Well-posedness for the Axisymmetric Euler Equations

This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in critical Besov spaces B 1+3/p p,1 . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013